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Abstract
The mobility of charged particles in a stationary, turbulent magnetic field
B(x, z) and electric field E = (0, 0, E) is investigated by means of percolation
theory. The escape probability is characterized by the point-to-line connectivity
τz(L) = Prob(0 ↔ z = L) of non-uniform (E �= 0) subcritical percolation
clusters of an equivalent potential model. A general upper bound on τz(L) is
derived and verified by numerical simulations, together with auxiliary results
on uniform (E = 0) percolation, including the relations ξ ∝ |h − hc|−4/3 and
τz(L) ∝ L−0.1 e−L/ξ . For 〈B〉 → 0, runaway occurs similarly to the classical
Dreicer scenario, with the Coulomb collisions replaced by deflections on
magnetic irregularities. The collisionless analogue of the Dreicer field
is Ec = 0.24 q

m
l〈B2

x + B2
z 〉, with l the correlation length of the magnetic

irregularities.

PACS numbers: 45.50.Dd, 64.60.Ak, 52.65.Pp, 05.50.+q

1. Introduction

If a collisional plasma is exposed to a dc electric field, free acceleration is limited to those
particles for which the electric field exceeds the collisional drag (Dreicer 1960). Depending
on whether all or only the fastest particles fulfil this ‘Dreicer’ criterion, bulk acceleration or
Ohmic heating is the dominant effect.

The Dreicer criterion does not apply to collisionless populations, which are frequently
encountered in astrophysical applications. However, such particles still interact with the
ambient magnetic field, and scattering on magnetic turbulence can play the role of Coulomb
collisions. The cross section of Coulomb collisions decreases with velocity, and so does the
deflection by localized magnetic inhomogeneities. Depending on the ratio of the Larmor radius
to the inhomogeneity scale l, different regimes can occur. If the inhomogeneities are weak
(〈B2〉 
 〈B〉2) and smooth in the sense that the ‘mean’ Larmor radius ρ〈B〉

.= mv/e|〈B〉|
fulfils ρ〈B〉 � l, then a drift motion occurs. The existence of adiabatic motion integrals
admits a beautiful Lagrangian theory (Littlejohn 1981) and a well-developed perturbative
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description by quasi-linear diffusion (e.g. Schlickeiser 2002). There is no free acceleration
across 〈B〉. Another situation arises for strong (〈B2〉 � 〈B〉2) inhomogeneities if the mean
Larmor radius exceeds the system size Ls . If, furthermore, the ‘Larmor radius’ due to
fluctuations ρδB

.= vm/e
√

〈B2〉 − 〈B〉2 is comparable to the inhomogeneity scale, the orbits
can efficiently perforate across the mean magnetic field. Of particular interest is the situation
where the inhomogeneity scale is much smaller than the system size

l ∼ ρδB � Ls � ρ〈B〉 (1)

which represents homogeneous, strong magnetic turbulence as found, for example, in
numerical simulations of the Earth magnetotail (Arzner and Scholer 2001). If an electric
field is applied to charged particles in the magnetic turbulence (1), they may become freely
accelerated. Some aspects of this process have been described, in a geophysical context,
in terms of non-classical diffusion (Gefen et al 1983) by Milovanov and Zelenyi (1995) and
Treumann (1997) (among others), and modelled numerically, for example, by Ambrosiano
et al (1988) and Greco et al (2000).

The aim of this paper is to work out a non-perturbative, collisionless analogue to the
classical Dreicer scenario for the situation (1). The approach is based on the percolation
theory, with emphasis on the validation of analytical predictions by numerical simulations.
The particles are regarded as test particles. The set-up of the model is guided by the fact
that the transition to free acceleration takes place in a regime where adiabaticity breaks down
and exact orbits are essential, which rely on conservation laws and symmetries. On the other
hand, the onset of runaway bears the characteristics of a percolation problem, where most
exact results are available in two (or �6) dimensions. It is therefore quite natural to consider
a model with one ignorable space coordinate and highly complicated (turbulent) dependence
on the others. The results of this restricted, yet exact, model are attempted to provide useful
benchmarks for more complicated situations.

The organization of this paper is as follows. Section 2 formulates the particle dynamics
and gives the condition for unbounded motion in the absence of an electric field. Sections 3
and 4 contain the generalization to a non-vanishing electric field; this is done in several steps.
As a main result, a general upper bound on the point-to-line connectivity of non-uniform
percolation is derived, together with a criterion for free acceleration (section 5) similar to the
Dreicer condition. The results are summarized and discussed in section 6.

2. Two-dimensional particle dynamics

Consider classical particles in a stationary (∂t = 0) electromagnetic field with ∂y = 0 and
an irregular behaviour in r

.= (x, z). This configuration represents planar MHD turbulence,
i.e. helical magnetic surfaces, which are among the most general known MHD equilibria
(Edenstrasser 1980). Neglecting the time-dependence of B restricts the validity of the model
to particles which are fast compared to the Alfvén velocity. The gyration about in-plane
magnetic field lines corresponds to oscillation in an equivalent potential, and it is easily
verified that the in-plane motion can be written as

mr̈ = −∂�
∂r

+ qṙ × By(r)ŷ (2)

with the equivalent potential

�(r) = (Py − qAy(r))2
2m

+ qφ(r). (3)

Here Py = mvy0 + qAy(r0) is the (conserved) canonical momentum, and φ(r) is the electric
potential. By convention, 〈Ay〉 = 0, where angular brackets denote a space or ensemble
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average. The canonical momentum has contributions from both fields and particles, and their
relative weight has a simple physical interpretation,

qAy

mvy

 l

rL

where rL = mvy
/
q

√〈
B2
x + B2

z

〉
is a ‘Larmor radius’ due to the out-of-plane velocity. Thus,

dominant field (mechanic) contributions correspond to adiabatic (non-adiabatic) orbits.
Clearly, the motion (2) is restricted to

�(r) � E (4)

with E = m
2 |v0|2 + qφ(r0). Equation (4) is similar, but not equivalent, to the field line tying

theorem of Jones et al (1998). In the following, Ay(r) is modelled by a centred Gaussian
random field (Adler 1981) with variance σ 2 and Gaussian two-point function of correlation
length l; the magnetic field thus is a Gaussian random field with 〈Bx〉 = 〈Bz〉 = 0, and it is
assumed that m2

(
v2
x + v2

z

)/
q2
〈
B2
y

〉
> l2, so that gyration about By does not hinder particles

to explore their energetically accessible domain (4). Note that equation (2) does not involve
any approximation, and is able to model the transition from adiabatic to chaotic orbits.

Particles can become unbounded if the domain (4) is globally connected. Using
the methods of percolation theory (Isichenko 1992, Nakayama et al 1994, Grimmet 1999,
Milovanov and Zimbardo 2000) it can be shown that in the absence of an electric field
there exists a critical energy E0

c , below which particles are bounded with probability one
(Arzner et al 2002):

E0
c = P 2

y

2m
for φ = 0. (5)

Equation (5) follows from the critical level hc = 0 of the potential modelAy(r) � h. Particles
with E > E0

c have a strictly positive probability to be in the (unique) infinite cluster. Once
within this cluster, the motion is likely to be ‘ergodic’ so that particles eventually spread
out over the whole accessible domain. For subcritical particles

(
E < E0

c

)
the condition

m2
(
v2
x + v2

z

)/
q2
〈
B2
y

〉
> l2 is satisfied, on average, if 2

〈
B2
y

〉
<
〈
B2
x + B2

z

〉
; in what follows it is

supposed that 〈By〉 < mv/qLs (→0 for Ls → ∞), which is more restricting.
Now let an electric field E = E ẑ be present, which is weak in the sense that the electric

potential drop qEl is much smaller than the fluctuations of� (the precise condition is given in
equation (19)). The electric field gives rise to a tilted potential, and originally trapped particles
run away as soon as the accessible potential saddles have sufficiently declined. In order to
work out this process, we adapt a ‘graded percolation’ argument (Trugman and Weinrib 1983,
Sapoval et al 1985, Ziff and Sapoval 1986, Roux et al 1990). Qualitatively, the argument is
as follows. In the absence of an electric field, a particle with subcritical energy E < E0

c

visits a connected cluster of typical (finite) size, say, L. In the presence of an electric field,
the motion along z leads to an energy gain E = qEL. The particle is expected to escape if
the energy gain exceeds the potential fluctuations. A rough estimate is to set L = ξ0, with
ξ0 the correlation length of the connected domains for E = 0. The escape criterion, valid for
weak electric fields, then becomes E + qEξ0 � E0

c . The present paper proposes a similar,
yet more refined description in terms of the escape probability of a particle which is initially
located at z = 0.

3. Connectivity

The escape probability depends on the connectivity of percolating domains, to which this
section is devoted. Well-known lattice results are adapted and generalized to the continuum
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model (4), with intermediate steps verified by simulations; numerical coefficients which are
not predicted by theory are determined from simulations.

3.1. Lattice results

Most theoretical results have been established for lattice percolation, and we begin with a brief
outline of the lattice case. The percolation process itself comes in two variants: site and bond
percolation. In site percolation, a cluster consists of pairwise adjacent ‘occupied’ vertices,
whereas in bond percolation it is the nearest-neighbour bond which is ‘open’ or ‘closed’. In
any case, the sites or bonds are independent of each other, and ‘occupied’ or ‘open’ with
probability p, and ‘vacant’ or ‘closed’ with probability 1 − p. For uniform percolation
(p independent of position) there exists a critical probability pc, above which an infinite
connected cluster occurs with probability one. Sections 3.1–3.4 will be concerned with this
uniform case only.

There appear several characteristics of connected clusters in the literature. For our
purpose, the relevant characteristic is the connectivity. Following Grimmet (1999) for (bond)
percolation on the square lattice, the connectivity τ (0, en) is defined as the probability that
the origin 0 = (0, 0), if belonging to a cluster, is connected to the point en = (0, n). In
the subcritical phase (p < pc), where clusters are finite, the connectivity τ (0, en) decays
exponentially with distance, τ (0, en) ∼ e−n/ξ , where the sign ‘∼’ indicates that

lim
n→∞ − 1

n
ln τ (0, en) = 1

ξ
< ∞. (6)

Throughout this paper, the correlation length ξ is defined by equation (6) (and not by the rms
cluster radius as used, for example, by Hoshen 1997). Note that the limit (6) is relatively
weak, and allows for power law corrections to the exponential decay.

For the present application, the foregoing definition of connectivity is adapted as follows.
We consider the infinite square lattice, and define the point-to-line connectivity τz(n) as the
probability that the origin is connected to the line z = n > 0, if it is in a connected cluster.
(This conditioning is automatically satisfied by a particle in the potential (3).) Normalization is
such that τz(0) = 1. The probability τz(n) is well defined and does not collapse to a zero–one
law when the system size goes to infinity. Note that the path connecting the origin to the line
z = n is allowed to pass at z < 0, and that the following inequality holds:

τ (0, en) � τz(n) �
∞∑

x=−∞
τ (0, (x, n)). (7)

See Grimmet (1999) for a formal proof of similar results involving the FKG inequality (Harris
1960, Fortuin et al 1971). From numerical simulations, the connectivity τz(n) is found to
follow closely an exponential law down to n � 0.3ξ (figure 1)—an advantage which is not
shared by other characteristics such as the spanning probabilityπz(n,w) across a box of width
w and height n, or the cluster radius distribution ρz(n), which are shown for comparison in
figure 2. In fact, the almost-exponential decay of τz(n) is in agreement with the analytic
results of Campanino et al (1991), who showed for bond percolation on the d-dimensional
hypercubic lattice that τ (0, (0, 0, . . . , n))→ A(p)n(1−d)/2 e−n/ξ , and that

∑
x∈Zd−1 τ (0, (x, n))

decays purely exponentially with n (the leading power law correction is n0).
With regard to equation (7), we thus make the ansatz

τz(n)→ a0n
χ e−n/ξ (8)

with the same correlation length ξ as in τ (0, en) (see appendix B) and some χ satisfying
−1/2 � χ � 0. The asymptotic form (→) indicates that the ratio of the left-hand and
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Figure 1. Point-to-line connectivity (left, solid line) from numerical simulations of site percolation
on a square 20482 lattice, and its analytical representation by equation (8) (dashed). Different curves
represent different values of |p − pc| with pc = 0.592 76; the case |p − pc| = 0.06 is shown in
exploded view. Right: simulated (crosses) and theoretical (solid line) correlation length.

Figure 2. Left: the spanning probability πz(n,w) across a box of width w = 1024 and height
n (cyclic boundaries in x). Right: cluster diameter distribution ρz(D), with D = max |zi − zj |.
Insets: empirical correlation lengths (crosses) according to equation (6); the solid lines represent
equation (9), with κ0 = 0.27 and pc = 0.592 76. Note that πz(n,w) and ρz(D) have the same
asymptotic behaviour in the sense of equation (6), but appreciably deviate from it at n,D < ξ .

right-hand sides of equation (8) converges to unity as n→ ∞. The normalization coefficient
a0 depends on τz(n) at n� ξ , and must be determined numerically.

3.2. Correlation length

The correlation length ξ is a function of p and diverges as p ↑ pc. The divergence is believed
to be of the form

ξ = κ0|p − pc|−ν (9)

with κ0 a numerical factor of order unity (which cannot be derived from scaling arguments),and
the presumably exact result ν = 4/3 (Nienhuis et al 1980, Riedel 1981), which is supported
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Figure 3. The spanning probability θN (p) = nc/(nc + nd) (solid line) and its complement
1 − θN (p) (dashed) across a square lattice of linear size N = 1024. nc (nd ) is the number of
connected (disconnected) realizations in an ensemble of 50 000 realizations. The empirical critical
probability, defined by θN (p) = 1/2, is pc = 0.592 76 ± 0.000 04.

by numerical simulations (e.g. Hoshen 1997, ν = 1.320 ± 0.002). The critical probability
pc depends on the lattice type and percolation model; for bond percolation on the square
lattice pc = 1/2 (Sykes and Essam 1964, Kesten 1980), and for site percolation on the square
lattice pc = 0.592 7460 ± 0.000 000 05 (Ziff 1992). The latter value is known numerically
only and is subject to finite size effects. Site percolation on a square lattice represents
the digital zero-correlation limit of the continuous field used in the present simulations
(see appendix A).

Figure 1 shows, as a benchmark test of the present code, the numerical verification of
equation (8) for site percolation on a square lattice of size 20482. The connectivity is evaluated
from 20 000 realizations with double periodic boundary conditions. Different graphs represent
different values of |p − pc|; for better clarity, the case |p − pc| = 0.06 is shown as an
exploded view (inset). The critical probability pc = 0.592 76 ± 0.000 04 is taken from an
independent simulation of the spanning probability of a lattice of half size (N = 1024) with
non-periodic boundaries (figure 3), where pc is defined by the cross-over of the top–bottom
connection (disconnection) probabilities, which provides a robust estimate (Ziff 1992) of the
finite-size critical probability of the present simulation. The sample size underlying figure 3
is 50 000.

Equation (8) was fitted to each curve of figure 1 (left), and the resulting correlation
lengths ξ are shown in figure 1 (right, crosses), together with the theoretical prediction (9) for
κ0 = 0.267 and ν = 4/3 (solid line). The estimates are derived from the dashed segments
(figure 1, left) which represent equation (8) with a0 = 1.02 (independently of p) andχ = −0.1.
Assuming Poisson errors, the reduced chi square is χ2

min = 1.4. If the parameters (a0, χ, κ0, ν)

are jointly estimated from the full set of Monte Carlo data, one finds that a0 = 1.05 ± 0.06,
χ = −0.11 ± 0.015, κ0 = 0.267 ± 0.007 and ν = 1.3325 ± 0.003. The errors are not
independent of each other, and represent worst-case estimates based on a 4χ2

min-deviation
(see figure 4). In addition to the statistical errors there are systematic errors which depend
on the selection of fitting intervals. By varying the latter, it was found that the systematic
errors are of the same order as the statistical errors, and dominate for sample sizes �104. To
summarize, the different methods for determining the parameters (a0, χ, κ0, ν) agree within
the errors of the simulation, and are compatible with the theoretical results ν = 4/3 and
−1/2 � χ � 0.
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Figure 4. Joint estimate of the parameters a0, χ, κ0, ν from the Monte Carlo data (figure 1). The
contours represent chi-square levels χ2 = (2, 4, 8) · χ2

min assuming purely statistical (Poisson)
errors. The theoretical value ν = 4/3 is indicated by a dashed line.

3.3. Sign-symmetric, continuous field

Equations (8)–(9) were established for a discrete lattice rather than for a continuous field
such as Ay(r). Following a suggestion by Weinrib (1982), the lattice results (8)–(9) can be
translated to the excursion set G(r) � h of a continuous sign-symmetric random field G(r)
by associating the maxima of G(r) with the ‘lattice’ vertices, and the saddle points of G(r)
with the ‘lattice’ bonds. The term ‘lattice’ is put into quotation marks since the ‘lattice’
has, in general, an irregular structure. The probability p of the discrete case is related to the
normalized saddle point density ps(h) according to p = ∫ h

−∞ ps(h) dh, and pc corresponds
to the critical level hc = 0 (in two dimensions). For Gaussian random fields (Adler 1981)
the normalized

(∫∞
−∞ ps dh = 1

)
saddle point density has a point set representation and can

be obtained from a straightforward calculation. In the case of a Gaussian two-point function
〈G(0)G(r)〉 = σ 2 e−r2/2l2 , the result is

ps(h) = (3/4π)1/2σ−1 e−3h2/4σ 2
.

Expanding ps(h) about h = hc, one finds that |p − pc| 
 (3/4π)1/2σ−1|h− hc| and

ξ = (4π/3)ν/2κl|(h− hc)/σ |−ν (10)
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Figure 5. Similar to figure 1, but for a ‘continuous’ Gaussian random field G with correlation
length l = 2 and variance σ 2 = 1, cut at threshold h. The critical energy of this configuration is
hc = 0.014; the linear system size is 10242.

for some numerical factor κ . In the derivation of equation (10) it was used that e−3h2
c /4σ

2 = 1 +
o
(
h2
c

)
, with hc = 0 for theoretical, and hc ≈ 0 for numerical realizations. The continuous

version of equation (8) is

τz(L)→ a

(
L

l

)χ
e−L/ξ . (11)

According to the universality hypothesis (e.g. Fisher 1983), the critical behaviour is
independent of the details of the lattice structure in a given dimension; hence, ν and χ should
be the same as in the discrete case. This conjecture is supported by numerical simulations.
Figure 5 shows the results from a numerical experiment similar to figure 1, but with the
Poisson lattice replaced by a ‘continuous’ (see appendix A) centred Gaussian random field G
with variance σ 2 = 1 and correlation length l = 2.5 lattice constants. The linear system size is
N = 1024, and double periodic boundary conditions are applied. The accessible regions are
G(r) � h. The empirical critical threshold of this random field, obtained from spanning
probabilities, is 〈hc〉 = 0.014. Figure 5 (left) shows the connectivity τz(L) for different values
of |h− hc|/σ of a sample of 30 000 realizations ofG(r). Again, τz(L) decays asymptotically
exponentially ifL � 0.3ξ , and the empirical dependence of ξ on |h−hc|/σ is compatible with
equation (10) (figure 5 right). Similar simulations as in figure 5 were repeated with various l
ranging from 1 to 16 lattice constants. From these runs, the validity of equations (10)–(11) is
confirmed and the numerical coefficients are found to be a = 1.15 ± 0.08, κ = 0.8 ± 0.05 and
χ = −0.1 ± 0.03. For fixedN/l, the critical threshold hc decreases with increasing l towards
the theoretical limit hc = 0.

3.4. Interlude: finite-size effects

It can be noted from figure 5 that the Monte Carlo results drop somewhat below the analytical
prediction as h → hc, which is a consequence of the finite system size (cf Ziff 1992). The
connectivity becomes affected by the finite system size (N) whenever ξ becomes comparable to
N. Since the lattice simulations allow largerN/ξ than the continuum simulations, the finite-size
effects are studied from lattice runs. Increasing N for a fixed value of p, and determining ξ as in
figure 1, it is found that ξ is generally under-estimated if ξ �� N . Figure 6 shows an example
of lattice (site) percolation for the case p = 0.583 25 (<pc). The system size is increased
in powers of 2 from N = 64 to N = 2048. The theoretical value ξ = 0.267|p − pc|−ν is
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Figure 6. The dependence of the correlation length ξ on the system size N for fixed
|p − pc| = 0.0095.

indicated by a dashed line (averaged over 3000 samples). As can be seen from figure 6, ξ(N)
monotonically approaches the theoretical value. This behaviour was found to be generic:
quite naturally, ξ becomes under-estimated in a finite system approaching criticality. Within
the limited range of scales of the present ‘brute force’ (full lattice) simulation, deviations of
the relation ν = 4/3 can be attributed to the finite system size N, and the relation ν = 4/3 is
consistent with the extrapolationN → ∞.

3.5. Equivalent potential

Equation (10) holds for a sign-symmetric random field. In order to apply it to the potential
(3), the accessible domain (equation 4)) is first rewritten in the dimensionless form

(η −G)2 − εz∗ � E∗ (12)

withAy = σG, 〈G2〉 = 1, z∗ = z/l, η = Py(qσ)
−1,E∗ = 2mE(q2σ 2)−1, ε = 2mEl(qσ 2)−1.

Thus, lengths are normalized by the magnetic inhomogeneity scale, the canonical momentum
is normalized by the field momentum (and similar for the energy), and the electric field
is characterized by the relative voltage drop across a magnetic inhomogeneity. Besides a
simplification of notation, equation (12) reveals the physical parameters on which the escape
energy solely depends: E∗ is a function of the dimensionless canonical momentum (η) and
the dimensionless electric field (ε).

Let us proceed with the ‘graded percolation’ of the beginning of section 3, and start with
the uniform case ε = 0. In dimensionless form, the accessible domain is G .= {(G−η)2 � E∗}
with E∗ � η2 (subcritical phase), and we are interested in the probability that the origin, if
belonging to G, is connected to the line z = L. The complement of G contains an infinite
connected domain Ḡ∞, and G has two types of borders: interior (with holes) and exterior
(with Ḡ∞) (figure 7). Obviously, it is the latter which is relevant for the asymptotic behaviour
of the connectivity. When expressed in terms of G, to which equations (10)–(11) apply, the
accessible domain becomes {η−√

E∗ � G � η +
√
E∗}. Its complement is Ḡ = Ḡ1∪ Ḡ2, with

Ḡ1 = {G < η − √
E∗} and Ḡ2 = {G > η +

√
E∗}. Depending on the sign of η, Ḡ∞ is either

within Ḡ1 (if η > 0) or within Ḡ2 (if η < 0). (This is so because of sign (η±√
E∗) = sign(η),

and because the critical threshold of G is zero.) If Ḡ∞ is within Ḡ1, then the maximal accessible
domain (limited by exterior borders) is G1 = {G � η − √

E∗}; if Ḡ∞ is within Ḡ2, then the
maximal accessible domain is G2 = {G � η +

√
E∗}. Both cases are combined in

G′ .= {sign(η)G � |η| −
√
E∗}. (13)

By construction, G ⊆ G′, and the domain G′ differs from G only by the absence of interior
holes (figure 7), so that G and G′ have the same correlation length in the sense of equation (6).
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Figure 7. Accessible (white) and forbidden (grey) regions of the domains G .= (G − η)2 � E∗
(left) and G ′ .= sign(η)G � |η| − √

E∗ (right); both are in the subcritical phase with η = −0.8,
E∗ = 0.5.

As G is sign-symmetric, the factor ‘sign(η)’ in equation (13) does not matter when considering
a statistical average. Equation (10) therefore predicts that

ξ = (4π/3)ν/2κl||η| −
√
E∗ + hc|−ν for ε = 0 (14)

where hc has been retained to account for numerical realizations. Now let ε > 0, and
consider the behaviour of the domains G = {(G − η)2 � E∗ + εz∗} and G′ = {sign(η)G �
|η|−√

E∗ + εz∗}. Note that ε > 0 implies z > −E∗/ε, the physical reason for which is energy
conservation in the magnetic irregularities, so that the electric potential imposes a strict limit
on the accessible domain. For ε > 0, both G and G′ contain unique connected domains G∞

and G′∞, which extend to z = +∞. The relation G ⊆ G′ holds pointwise and therefore also
for ε > 0. As a consequence, one has that G∞ ⊆ G′∞ because G and G′ coincide at z → ∞.
It follows that G′ and G have the same correlation length also, if there is an electric field.

The quantity of interest is the probability that a particle which is initially at z = 0 can
visit z = L; such a particle is a priori in its energetically accessible domain G, and therefore
also in G′. Its geometrical probability to visit z = L is thus characterized by the (common)
correlation length of G and G′.

4. Escape probability

In the presence of an electric field, the particles gain energy when moving along z, which
amounts to a continuous increase in the correlation length ξ(z). In terms of lattice percolation,
ε > 0 corresponds to non-uniform percolation with ∂p/∂n > 0.

It is not trivial to calculate the exact connectivity of non-uniform percolation, but it is
rather easy to obtain a good upper bound. For the sake of simplicity this is derived for lattice
percolation, and its continuum version is verified by numerical simulations. The strategy
is to decompose τz(n) into a chain of conditional probabilities τz(k|k − 1), and to establish
inequalities between the non-uniform conditional probabilities and their uniform counterparts.
We start with some necessary definitions and prerequisites.

All points of the line z = n � 0, which are connected to the origin, are either accessible
through z � n (‘direct’ connections), or through excursions to z > n (‘indirect’ connections).
See figure 8 for a clarification. It is the ‘direct’ connections which are relevant for the
event {0 ↔ z = n}, since each ‘indirect’ connection relies on a ‘direct’ one. Let τz(n|n − 1)
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O

z

n

0

x

Figure 8. Direct and indirect connections of the origin (O) to the line z = n. There are three
directly, and two indirectly connected intervals.

be the probability that the origin is connected to the line z = n, conditional to being
connected to the line z = n − 1. Note that τz(n|n − 1) = τz(n)/τz(n − 1) because
Prob({0 ↔ z = n} ∩ {0 ↔ z = n − 1}) = Prob({0 ↔ z = n}). In the uniform case
(p = const), τz(n) is given by equation (8) and the conditional probabilities satisfy

τz(n + 1|n)→
(
n + 1

n

)χ
e−1/ξ(p) � e−1/ξ(p). (15)

The event {0 ↔ z = n − 1} implies that there is at least one point, say (x, n − 1), which is
connected to the origin. In general, there are further such points on the line z = n − 1, and
we are interested in those m of them which are connected to (x, n− 1) by ‘direct’ paths, and
are relevant to the extinction event {0 ↔ z = n − 1} ∩ {0 �↔ z = n}. By the independence
of the individual sites (or bonds), the extinction probability is (1 − p)m+1, and therefore
τz(n|n − 1) = 1 − (1 − p)m+1. Note that the extinction probability is the same for both site
and bond percolation on the square lattice, and that it is a decreasing function of m. Consider
now the non-uniform case with ∂p/∂n � 0 at some fixed n = n0. Compared to the uniform
case with uniform probability p(n0), a positive gradient favours ‘indirect’ connections and
suppresses ‘direct’ ones, so that m is expected to become smaller and, therefore (without
complete rigour),

τ iz (n0|n0 − 1) � τ 0
z (n0|n0 − 1) ∀n0 : 0 � p(n0) < pc (16)

where τ iz (n0|n0 − 1) = τz(n0|n0 − 1;p = p(n)) and τ 0(n0|n0 − 1) = τ 0
z (n0|n0 − 1;p =

p(n0)). The non-uniform connectivity can be written as τz(n) = τ iz (n|n − 1)τ iz (n − 1|n −
2) . . . τ iz (1|0)τz(0). Each factor in this chain satisfies equations (16) and (15), so that

τz(n) = τ iz (n|n− 1)τ iz(n− 1|n− 2) . . . τ iz (1|0)
� τ 0

z (n|n− 1)τ 0
z (n− 1|n− 2) . . . τ 0

z (1|0)


∏
k

(
k

k − 1

)χ
e−1/ξ(p(k))


 a0n
χ exp

[
−

n∑
k=1

1/ξ(p(k))

]
.

(17)
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The normalization factor a0 has been introduced to obtain agreement with the uniform case.
The continuous version of inequality (17) is

τz(L) � a

(
L̃

l

)χ
exp

(
−
∫ L̃

0

dz

ξ(z)

)
(18)

where ξ(z) = (4π/3)ν/2κl||η|−√
E∗ + εz/l|−ν , L̃ = min(L, zmax), and zmax = l(η2 −E∗)/ε

is a cut-off at which ξ(z) diverges; the dimensionless parameters (η,E∗, ε) are as in
equation (12). For ε = 0, equation (18) reduces to equation (11). Equation (18) is only
valid if zmax � 0.3ξ(0); it is thus restricted to weak electric fields in the sense that

ε � (η2 − E∗)(|η| +
√
E∗)ν. (19)

Equation (19) is not a severe constraint since it is always fulfilled at the onset of runaway.
Beyond zmax the connectivity (18) remains constant, and particles are expected to become free.
The integral occurring in equation (18) can be calculated explicitly, and one obtains

τz(L) � a

(
L̃

l

)χ
exp

{
−
(

3

4π

)ν/2 1

εκ
f (x, |η| + hc,E∗, ν)

∣∣∣x=εL̃/l
x=0

}
(20)

where

f (x, a, b, ν) = 2
a2+ν + (a − √

b + x)ν[(b + x)(1 + ν)− aν√b + x − a2]

(2 + ν)(1 + ν)
.

If ε = 0, the right-hand side of equation (18) decays exponentially, but for ε > 0 the right-hand
side of equation (20) converges to the finite limit τz(zmax) which represents the geometrical
escape probability (hc = 0 for simplicity):

pe � a
(
η2 − E∗

ε

)χ
exp

{
−2

(
3

4π

)ν/2
(|η| − √

E∗)1+ν(|η| + (1 + ν)
√
E∗)

εκ(2 + ν)(1 + ν)

}
. (21)

Clearly, the electric field helps particles to escape, indicating ∂pe/∂ε > 0, which is easily
verified for equation (21) with χ < 0. For given values of pe, ε and η, equation (21) has a
unique solution for E∗ satisfying ∂E∗/∂ε � 0. As a function of E∗, the right-hand side of
equation (21) represents an unsharp step function of width

7E∗ 
 η2 − 1
9 (4.8(εκ/|η|)3/7 − 3|η|)2 (22)

centred at E∗ 
 η2 − 7E∗/2. Equation (20) is a theoretical upper bound derived from an
analogue lattice case, and its quality is to be assessed from numerical simulations. Figure 9
shows a comparison, where a solid line represents the simulation and a dashed line represents
equation (20). The simulation comprises 80 000 realizations of a N = 1024 system with
l = 2.8, hc = 0.012, and different sets (E∗, η, ε). Each realization covers the range
−z0 � z � N − z0, where the choice z0 = max(E∗/ε,N/4) prevents boundary effects.
Connectivity is computed from the distances of random points at z = 0 to the top of the
connected clusters. The numerical parameters used in equation (20) are in accordance with
the homogeneous simulations (κ = 0.79, a = 1.15, χ = −0.1, ν = 4/3). As can be seen
from figure 9, equation (20) is rather tight over many decades; numerically, it was found that
0.38 × τEq.20

z (L) � τ simulated
z (L) � 0.57 × τEq.20

z (L). Similarly, inequality (17) was verified
for the lattice case with non-uniform probability p(n) = p0 + ε(n−n0). The accuracy of (17)
is similar for the continuous case (20).
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Figure 9. The effect of the electric field (ε): simulated connectivity (solid) and upper bound
(equation (20), dashed) of the excursion set G′, with 〈G2〉 = 1 and l = 2.8. Different graphs
represent different sets (E∗, η, ε); zmax (equation (18)) is marked dotted-dashed. The case ε = 0
corresponds to figure 5.
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5. ‘Collisionless Dreicer field’

We shall now draw a brief analogy with the classical Dreicer field. Within its range of validity
(19), equation (21) is dominated by the exponential factor. As a function of ε, the escape
probability thus behaves like e−k/ε . The graph of this function increases monotonically with
ε and has a (smooth) shoulder at ε 
 4k, which can be used to define an escape criterion

ε � 8

(
3

4π

)ν/2
(|η| − √

E∗)1+ν(|η| + (1 + ν)
√
E∗)

κ(2 + ν)(1 + ν)
. (23)

A particle, which is initially at rest (E∗ = 0), is thus expected to escape if the electric field
exceeds εc = 8(3/4π)ν/2|G(r0)|2+ν/κ(2 +ν)(1 +ν). Averaging over an ensemble of Gaussian
fields (or, equivalently, over the particle initial position), one obtains the mean critical field

〈εc〉 = 8
(3/2)ν/28

(
1
2 + ν

2

)
π(1+ν)/2(2 + ν)κ

= 0.76

κ
.

Restoring the physical units, using κ = 0.8, ν = 4/3, and expressing the variance of the vector
potential in terms of the variance of the magnetic field,

〈
B2
x +B2

z

〉 = 2
〈
A2
y

〉/
l2, one obtains the

acceleration criterion E > Ec with

Ec = 0.24
q

m
l
〈
B2
x + B2

z

〉
. (24)

Within the collisionless model,Ec plays a similar role to the Dreicer field in a collisional plasma,
with scattering on magnetic inhomogeneities replacing the Coulomb collisions. Similar to the
Coulomb logarithm, the exact value of the numerical coefficient in equation (24) depends on
its actual definition, i.e. on the required escape probability, but is always of the order given
by equation (24). Equation (24) has a simple physical interpretation: the voltage drop across
an inhomogeneity must exceed some fraction of the equivalent potential fluctuations, which
is determined by the percolation theory.

6. Summary and discussion

Starting from the particle dynamics in an irregular magnetic field B(x, z), the problem of free
acceleration by an electric field E = (0, 0, E) was reduced to the point-to-line connectivity
τz(L) of an equivalent potential model. τz(L) is derived from simulations and from the
predictions of percolation theory. The accepted relation ξ ∝ |p − pc|−4/3 is confirmed, and
the constants of proportionality are determined for both the square lattice and the potential
modelG(x, z) � h. For uniform percolation it is found that τz(L) ∝ L−0.1 e−L/ξ in both the
lattice and continuous cases, where the power law correction is within the theoretical bounds
following from the work of Campanino et al (1991). A weak electric field corresponds to
non-uniform percolation with slowly varying probabilities; in this case, a general upper bound
on τz(L) is derived and confirmed by numerical simulations.

The agreement between the upper bound and the simulation is not too surprising
in the light of the following argument: if the derivation equation (18) is repeated for
the probability τ̄z(L) that a point (x, L) is connected to the line z = 0, one obtains
τ̄z(L) � a(L/l)χ exp

{∫ 0
L

dz/ξ(z)
}
, where the � sign arises from the reversed role of

direct and indirect connections. Now, as the electric field is weak, there exists a range
ξ(0) � L � zmax for which τ̄z(L) ∼ τ (0, (0, L)) = τ ((0, L), 0) ∼ τz(L) (see appendix B).
The combination of the upper bound on τz(L) and the lower bound on τ̄z(L) then gives that
τz(L) ∼ exp

{− ∫ L
0 dz/ξ(z)

}
, so that the right-hand side of equation (18) gives, at least, the

correct logarithmic order.
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Figure 10. Test particle simulation with Gaussian Ay(r) with l = 20, system size N = 512
(periodic boundaries) and electric field ε = 0.12. Left: initial dimensionless kinetic energy
(E∗) and canonical momentum (η) of bounded (grey) and free (black) particles; the ‘collisionless
Dreicer’ criterion (23) is marked by a solid line. Right: the energy distribution at the end of the
simulation, showing the separation into bounded and free populations.

The connectivity provides an estimate of the escape probability, which increases with the
excess of kinetic energy over the field contribution, and with the electric field. The similarity
of this scenario to the classical Dreicer threshold is emphasized by the introduction of a
‘collisionless Dreicer field’. Whereas in a collisional plasma runaway sets on for the electrons
before the ions, this is not so in the collisionless case where the ions become demagnetized
before the electrons. The arguments leading to equation (21) are easily generalized to other
tilted potentials of the form � = �(G(r); z), which arise, for example, in the quantum Hall
effect (Trugman and Weinrib 1983).

It was stated (e.g. Sapoval et al 1985) that some aspects of the critical phenomena may
persist in non-uniform percolation. For the present model this would imply the existence of
a critical energy Ec < E0

c if E > 0. However, such a critical energy does not exist in a strict
sense, because limL→∞ τz(L) �= 0 if E > 0. Nevertheless, the escape probability is strongly
suppressed if E∗ < η2 −7E∗ (equation (22)), and goes over to a step function as E → 0.

Equation (21) refers to the geometrical properties of � only (‘static’ percolation). The
dynamical evolution of percolating particles is beyond the scope of this paper, but a brief
numerical check of their long-term behaviour is appropriate. It was mentioned in section 3
that one may expect ergodic behaviour and unbounded motion if a particle is in the infinite
accessible domain, which is expected to be the case if the ‘collisionless Dreicer’ criterion (23) is
fulfilled. Within the numerical accuracy, this conjecture is supported by trajectory simulations,
an example of which is shown in figure 10. The vector potential has correlation length l = 20,
the linear system size is N = 512, and the dimensionless electric field is ε = 0.12. About
104 test particles (q/m = 1) are integrated forward in time. The boundary conditions are
double periodic and the electric field always points in the +z direction, so that every cycle in z
increases (or decreases) the kinetic energy by ±(N/l)ε. The simulated duration is 5×1049−1

δB ,
with 9δB the gyro frequency due to the rms magnetic fluctuations; this duration corresponds
to a distance ∼1700 l at free propagation. The initial velocities are isotropic with energies
E∗ uniform in [0, 1]; the initial positions are uniform in [0, N] × [0, N]. The particles are
considered free when their final dimensionless kinetic energy E∗ exceeds 10, and bounded if
below 10. The initial energy and momentum of free (bounded) particles is marked black (grey)
(figure 10, left view). For comparison, the ‘collisionless Dreicer’ criterion (23) is indicated by
a solid line. Most particles fulfilling (23) eventually become free, and the initial population
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is separated into bounded and accelerated parts (figure 10, right view), as expected from the
assumption of ergodicity. The bounded-free transition is somewhat less sharp than expected
from equation (22), which is attributed to the small effective system size N/l = 25.

Appendix A. Numerical simulations

The numerical experiments deal with site percolation on a square lattice of linear sizeN � 211.
For the lattice model, the vertices are independent of each other, and occupied with probability
p. In the continuous case, a Gaussian random field G(r) is constructed on the square lattice
using a standard spectral method with random phases and prescribed power spectrum/two-
point function (Martinez et al 1992). Each vertex ri is ‘occupied’ if G(ri) � h, and ‘vacant’
ifG(ri) > h. The main difference between the lattice and ‘continuum’ models is the presence
of spatial correlations in the latter. For the sake of digital resolution, G′ is simulated rather
than G, which is structurally unstable for η → 0. The two-point function ofG(r) is chosen as
〈G(0)G(r)〉 = e−r2/2l2 , with l � 2. Avoiding discretization effects requires l � 1; however,
this also decreases the effective system sizeN/l. Numerous runs were performed with varying
N, l and N/l, from which it was found that discretization effects play a substantial role if
l � 4, where they shift the critical threshold from the theoretical value hc = 0 up to hc ∼ 0.03
(for l = 1). Due to its spectral construction, G(r) has double periodic boundary conditions,
which are also applied to the connected clusters in the uniform dimension(s). Periodic
boundaries avoid the situation that large clusters are cut off and counted as artificial fragments.
The clusters are classified by a slightly modified version of the classical Hoshen–Kopelman
algorithm (Hoshen and Kopelman 1976). The connectivity and cluster diameter distributions
are determined from a unique sweep through the N2 lattice points. Each of the parameter sets
(p, η, ε, . . .) is simulated for 103–105 realizations. The test particle trajectories are computed
using a leapfrog scheme which enforces exact energy conservation in the absence of an electric
field. All code is written in Fortran 95, and a typical run takes a few days on a medium-size
work station.

Appendix B. Properties of τz(n) and τ (0, en)

This appendix provides some useful inequalities valid in the subcritical phase. We consider
percolation on the square lattice with uniform probabilities p. It is known that τ (0, en) →
A(p)n−1/2 e−n/ξ (Campanino et al 1991), and that the connection probability between the
origin and the boundary of the quadratic box B(n) = {max(|x|, |z|) � n} is Prob(0 ↔
∂B(n)) ∼ e−n/ξ , with the same correlation length ξ as in τ (0, en) (Grimmet 1999). Assuming
τz(n) ∼ e−n/λ, we will show that λ = ξ , and that the exponential ansatz is appropriate.
According to its definition, τz(n) � τ (0, en), implying λ � ξ . On the other hand,
τz(n) � Prob(0 ↔ ∂B(n)) because each path from the origin to the line z = n must pass
(or touch) ∂B(n), indicating that λ � ξ . The combination of the two inequalities yields
λ = ξ , and the simultaneous satisfaction of upper and lower exponential bounds justifies,
a posteriori, the exponential ansatz.
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